A web-based application to estimate wildlife fatality: from bias correction factors to corrected fatality estimates

Regina Bispo^{1,5,6}, Manuela Huso², Gustavo Palminha³ Nicholas Som², Lew Ladd², Joana Bernardino³, Tiago Marques^{4,6} & Dinis Pestana^{5,6}

¹ Departamento de Estatística, ISPA-IU, Lisboa, Portugal (Email: rbispo@ispa.pt)
² EcoStats, LLC, Corvallis, Oregon USA
³Bio3 - Estudos e Projectos em Biologia e Valorização de Recursos Naturais, Lda., Portugal
⁴ Centre for Research into Ecological and Environmental Modeling, St. Andrews, Scotland UK
⁵ Departamento de Estatística e Investigação Operacional, FCUL, Lisboa, Portugal
⁶ Centro de Estatística e Aplicações da Universidade de Lisboa, Portugal

Conference on Wind energy and Wildlife impacts 2 - 5 May, 2011

2 Fatality estimation at wind energy facilities

3 Computer application

- Wind generated energy is considered as one of the most lowest-priced renewable energy sources available in nature and is recognized to be a viable option for supplying energy needs;
- Unfortunately, wind farms development raise concerns related to the potential effects on flying vertebrates;
- Main areas of concern:
 - Mortality caused by collision;
 - ② Displacement of wildlife due to human disturbance;
 - Effects on migration flyways and/or flight paths;
 - Direct habitat loss and habitat changes resulting from the construction of wind energy facilities

Mortality caused by collision

- In wind farms, post-construction searches are used to monitor fatalities driven by collision, aiming to estimate real mortality;
- Observed Fatality $(C) \neq$ Real Fatality (F);
- Main reasons:
 - Carcass removal by scavengers or decomposition (r);
 - Imperfect detection by observers (p);
 - Search interval length (i);
 - Proportion of the searched area (π) .

$$\hat{F} = \frac{C}{r \times p} \qquad \qquad \hat{F} = \frac{C}{r \times p \times i} \qquad \qquad \hat{F} = \frac{1}{\pi} \frac{C}{r \times p \times i}$$

Statistical estimation problem

• From a purely statistical point of view quantifying fatality is an *estimation* problem;

Definition

If \hat{t} is an estimate of θ , a loss function — Absolute Error Loss — can be defined, reflecting the distance between \hat{t} and θ such as

$$L(\theta, \hat{t}) = |\hat{t} - \theta|$$

- This function reflects the fact that the loss of information increase as the distance between θ and \hat{f} increases;
- \bullet In fatality estimation, we aim to find an fatality estimator \hat{F} that minimizes the loss defined by

$$L(F,\hat{f}) = |\hat{f} - F|$$

Minimizing error loss in fatality estimation What has been done so far?

Carcass Removal:

- Carcass removal trials design (Anderson et al., 1999; Morrison, 2002)
- Modeling "time until removal" data (Bispo et al., 2010)
- Distributional assumptions impacts (Bispo et al., 2011)

Search Efficiency:

- Distance sampling analysis (Kerns, Erickson and Arnett, 2005)
- Trials design visibility classes (Kerns, Erickson and Arnett, 2005, Bernardino, 2006)
- Dogs detection efficiency (Arnett, 2006; Paula et al., 2011)

Search Interval:

• Effective search interval (Huso, 2010)

Searched Area:

• Modified weight representing an unequal probability sample, Horvitz-Thompson estimator (Huso, 2010)

Computer application

- As the complexity associated with the procedures may hinder its use, we have developed a web-based application to estimate wildlife fatality, the *Wildlife Fatality Estimator*
- Application contents:
 - Description, documentation and contacts
 - Carcass Persistence Module
 - Search Efficiency Module (under development)
 - (Fatality Estimation Module (under development)) Available estimators:
 - Huso (2010)
 - Jain et al. (2007)
 - Kerns et al. (2005)
 - Erickson et al. (2004); Shoenfeld (2004)
- Live demonstration http://internal.bio3.pt/demo:

Conclusion

- Wildlife Fatality Estimator highlights:
 - User-friendly interface.
 - 2 Easy access: all you need is an internet connection.
 - Tabular and graphical displays may be printed, saved or copied.
 - Bias correction factors estimation and fatality estimation can be used independently.
 - Integrates the several fatality estimators published until now. The user can use them all or simply choose which one(s) to use.
 - 💿 lt's free!
- We invite all the conference attendees to try it out during the "Workshop on Estimating Fatality at Wind-Power Plants"!

Thank you for your interest!

